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A nonlinear problem of optimal control is decomposed into problems of small- 
er dimension. The initial problem describes the dynamics of the system in 
the case when the constraints corresponding to the subsystems are separated out, 
and the general type constraints are present. Criteria of optimality of the ad- 
missible intermediate solutions are established together with the monotonus 
character of the iterative process with respect to the functional of the initial 
problem. 

We consider the problem of optimal control of the form [I, 21 

dXj (f)/dt = Aj (t) xj (t) + bj (uj (t), t), uj (t) > 0 

xj toI = xj, vj (Xj (T)) < 0, Pj (Xj (t), Uj (I?), t) < 0; j E J 

i 4j Cxj tT)) < OV i dj(xj (t)$ uj (t)) < 0 

(1) 
(2) 

j=l j=l (3) 

E’ (‘j) = i w (Xi CT)) + i i Cj (.~j (t)* u j (t), t) dt -3 max 
j=l ;; j=l (4) 

The relations (1) - (3) describe the dynamics of the controlled system consisting of J 
subsystems, a fixed index j = 1, . . . , J corresponding to each subsystem. For 

every i E J the dimensions of the vector functions xi, bj and xJ are Nj, Uj - 

I, Vj - Sj, qj - R, pj - Kjl dj - L , and the dimension of the matrix Aj is 

Nj x Nj.. The quantities uj represent the controls, xj are the phase variables 
and t is time. The actual meaning of the remaining variables in (1) - (4) is given 

in e.g. [2]. 
The constraints (1) and inequalities (l), (2) represent the restrictions for the sub- 

systems, and the inequalities (3) represent the general constraints of the dynamic 

system and are separable, together with the functional (4), over the subsystems. Con- 

crete forms of the subsystems can be interpreted with help of models [2]. 

The problem (1) - (4) represents a Bolza- type problem [3] of optimal control. 
The equalities in (2) represent the initial conditions, while the second and first inequal- 

ities in (2) and (3) respectively represent the conditions at the right end. The last 

relations in (2) and (3) represent mixed constraints. The problem in question consists, 

generally speaking, of determining bounded variables on the interval LO, T] ensuring 
that (4) attains its maximum under the constraints (1) - (3). 

The initial problem has the following dimension with respect to the controls and 
phase variables 

Ix.J+ $N; 
j=l 
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The aim of this paper is to reduce the problem (1) - (4) to problems of smaller dimen- 
sion. In [4] such a de~ompo~tion is carried out for the Linear problems of optimal 
control. 

We assume that the following conditions [l, 21 hold for the functions appearing in 
the problem. The fimctions._pj (xj, ~j, Q, - d_i (zj, “j, /j. 2>j (uj, t): cj (xi. “I, /) are 
continu~sly differentiable over the whole space, are concave in ~j and uj , and 
increase monotonousiy in s?Tj; functions - Vj (fij), - qj {fij), Wj (Bj) are continuously 
differentiable, concave, and increase monotonously in bj . We also assume that 
the measurable bounded components of the matrices -4 j (t) are greater than, or equal 
to zero almost everywhere on the interval @, T]. 

Let us assume that conditions [1,2] ensuring the reduction of the problems of opti- 
mal control to the problems of convex programming in Banach spaces, for which the 
action principle is valid, hold for the initial problem and for the intermediate problems 

discussed below. These conditions reduce, in particular, to fulfilling the Slater con- 
dition with respect to the constraints and inequalities 

The decomposition is constructed according to the scheme described in [4]. 
introduce the macrocontrols Ui (t) and functions aji (t) 

We 

.I 

ui (t) = 
c 

Uji (t), 
q @I 

q (t) n: - 
wi (t) ’ 

i621 

,I -1 

Assuming aji {l) to be fixed, we obtain from (I) - (4) the following problem with 
macrocontrol: 

dxj (t) 
dt dJj (t) “j (t) -i- Bj (ui lb), t), u’ (t) >, 0 

Xj (0) = Xjt Vj (Zj (T)) < 0, Pj (Xj (t), U” ft)* t) d 0 

i; ‘I,; Cxj CT)) G O7 u@;(t), et), t)<O 
j=l 

g(Wi) = W_j(Xj(T)) 1 J‘C(Xj(t), Ui(t),t)dt-+max 
,'=l 

Bj (Vi, t) = bj (aji Ui, I):’ Pj (Xj, Ui, t) = pj (Xl, aji Uiv t) 

L)(+ &) z i dj (xj,ajiui, q, c (x,,, fJi, t) = i; Cj (Xj, CtjiWi? t, 

j=l j=l 

Let us consider, for (5), a problem which is dual in the Wolf sence [5] 

‘Xj ft) 
- - = Aj* (1) Xj (t) - 

aP,j (Cj, Ui, t) 
dt dXj ?l,j tt) - 

3D (xj, Wi, t) ac (rp iJi, t) 
ax3 6 @I f axj 

(5) 

(6) 
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J aBj (Vi, t) J c aPj (Xj, ui, t) 
- 

j=l 
au’ Xjtt)+ C aui Ilj Ct) + 

j = 1 

aD (xi, U’, t) ac (X,j, ui, t) 
id s(t)> &y 

avj Cxj lT)) 
XjCT)=- ax. 

‘q j ("j lT)) awj txj tT) 1 
Oj - 

dXj v+ 
Tlj (t) > 0, 6 (t) g 0, Oj > 03 V > 0 

8Xj 

I) =i Wj(Xj (T))+ ~~(Xj,o’,t)+~ Qj (t)}dt-min 

j=l 0 ;=1 

Qj = Q,j - ezj 
Qjl = [Bj (U’t t) f Aj (t) Xj (t) - dxj (t) / dtl Xj (t) 
Qjz = PI (xi* LJi, t) qj (t) + D (Xj, U’, t) 6 (t) f Vj (xj (2’)) Oj -1 qj X 

(Xj (T)) V 

Here 
5 (t) 

Aj* It) denote the matrices obtained by transposing Aj (t); the variables 
represent dual impulses corresponding to the differential constraints (5). The 

dual variables Ojl nj (t), V, 6 (t) satisfy the last inequalities of (5). The dimensions 

of the vector functions Xj (t), TJj (t), 6 (t) are, respectively, Nj, Kj and L, and 
the dimensions of the vectors Oj and v are Sj and R. 

Let unique extremal solutions lJio (t) > 0, xi0 (t) aind ~1’ (t), ‘11’ (t), 6” (t), ajo, w” 
be found for the pair of conjugate problems (5) and (6), for some fixed values of 

aji (4 . The problems for the subsystems decompose into J problems where for 

every j E J we have the constraints (1) and restrictions (2), and the functionals 

(4) are supplemented by the terms 

T 

- Qj (‘j CT)) ‘O - 
1 

dj (xj (t), uj (t), ‘! 6’ (‘1 dt 

0 

Let Uj* (t) be optimal bounded solutions of the problems for the subsystems and 
Uj*O (t) be deiined by the relation Ujio (1) = aji (t) UiO (t). We shall call the 

quantities Ujio (t) the deaggregated controls. We introduce the function aji (t, oj) 
in accordance with the relation 

Uji (t, pj) = [Ujio (1) -1 Pj (Uji* (t) - 7Ljio (t))] / 2 (7) 

Z = i: [Uji’(t) + Pj (Uji* (t) - u:(t)) j 
j=l 

where the parameters pi accompanying every j E J belong to the segment [o, 11. 

Substituting aji (t, pj) given by (7) into the initial problem (1) - (4), we 

obtain a problem with macrocontrols depending on the parameters oj . Let us 

denote by go (PI) the extremal value of the functional in (5) as a function of pi. 
Let the maximum of the function go (~1) on a unit cube be attained at pi’. Then 
the functions ajf (t) for use in the next step of the iterative process can be obtained 

by substituting pj” into (7). 
Thus the initial problem (1) - (4) is reduced to problems of smaller dimension. 
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The number of the unknowns in the problem with macrocontrols is given by 

Every problem for a subsystem has I + Nj variables, and the problem of determin- 
ing the maximum of go (p) includes Jj variables. 

Next we construct a sequence of controls “j” (t) and SO~U~~OIU Xi0 (t) admissible 
by the initial problem (1) - (4). We formulate the criteria of optimality (condition 
of the termination of the process) and establish the monotonous character of the iterat- 
ive process in terms of the functional. 

Let xj” (t) denote the extremal solutions of the problems for the subsystems cor- 

responding to the controls Uj* (1) l Then the condition that the solution ujO (t), .rF (1) 
of the problem (1) - (4) is extremal, consists of satisfying the equation 

8 ;2; ;.[{i ~c,~(r;*,u;~,t)--,(.rlO,:i,“,t)]jdt=O (8) 

.: -1 0 .-1 

The relation (8) is derived in the manner analogous to that in ( [4]. Let l-j* Cl)3 

5j* Cf), Vj’ be the extremal solutions of the problems which are duals of the 

problems for the subsystems. Then the set hj~ (I), Sj* (t), 6$ (t), yj+, vD and irj* 
(r), xj+ (t) will be admissible for the problem dual to the initial problem (1) - (4). 
We have the following inequality in the values of the functionals for the admissible 
solutions of a pair of conjugated problems 

~ (lL.j* -i- f cj’: (t) dt) ~ i’ jlLj0 + i: C;O (t) dt) 
.,= 1 ii .,=l ', 

(9) 

Wj*b' 1C.j (Xj* (T)) - I:j (Xj (T)) y* - Qj (Xj* (2’)) V’, Ulj’ = U‘j (.Tj” (T)) 

Cj* (t) = Cj (Xj*, Uj', 1) t- bj* (1) hj* (1) C Jij (Xj*, Uj** 1) 61‘ (t) im 
dj (Xi*, Uj*, 1) 6” (t) 

bj* (t) = bj (Uj*, t) - Aj (1) xj* (t) - dxj* (t) / dt 

Cj' (t) = Cj (Zj', Uj’, 1) 

Terms containing bj* (t) in the left hand side integrand in (9) are equal to zero by 
virtue of (1). In addition we have 

T J J pj (sj*, uj*, t, 5j~ (1) 1 dt = 0, ~ “j (Xj* (T)) yj* = 0 

i=l 

by virtue of the condition [Z] of complementary flexibility. 
Thus (8) follows from (9). The equations in (9) and (8) ensure the extremality of 

the solution uj” (f), ~j” (t) of the problem (1) - (4). If U; (t), 2: (t) are not ex- 

tremal for the initial problem, then strict inequality obtains in (8). 
We shall show now that the iterative process in terms of the functional is strictly 

monotonous. Let us assume that a solution Uio (t) > 0 of the problem (5) with 

macrocontrols is obtained for some aji (t) and, that the corresponding solution 
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uj” (t), zj” (1) is not optimal for the initial problem. Let US consider the functions 

of* 0, P) given by (7) where Pf=P l 
We obtain the derivative with respect 

to p of the value of the functional p (p) at the point p = 0, and denote it by 
(8 (6)) ‘. This derivative is calculated, as in [4], like the derivative of the Lagrange 
function of the problem (5). i.e. of the functional in (6), with ~CC$ (t, ‘0) / 3p obtain- 
ed from (7), taken into account. 

Paying due regard to the dependence of z,* (t) on p , we shall consider, by 
virtue of the assumption of uniqueness, their extremal values as the dual variables. 
Identity transformations and use of (5) yield finally 

ab. aPj aaj 
-L uj*xjo - au uj*qjo - au. Uj’P au 

j j 3 

(J.0) 

where the partial derivatives are com+ed from the solution uIo (t), zIGI’” (t). 
Multiplying the second relations of (6) by .?P (t) , summing over i and integra- 

ting, we obtain from (6) and (10) 

(go (0))’ = i ri: [ ~ (Uj” C Uj’) + ~ (Uj* - Ujc) Xjo - 

0 j==l j 

(11) 

aPj aa. 
au. (uj* - up) qp - -2 (uj* - us”) 8” 

cJuj 1 
at 

3 

Multiplying the first relation of (6) by (zj* - z~‘), summing over n E N1 
and over j, integrating, with (5) taken into account, and paying due regard to the 
initial conditions (Z), we obtain 

3 T 

21s 
Pj * - ZOO) Hj + cpj] dt + (Zj* (T) - zj” (‘)) Xj” (‘) -= 0 

$4 0 

Hj= &j I &j - qj"apj i 8xj - 6”adjIazj 

qj = [bj (u:* t) - bj (uj*, 01 XP 

(12) 

Next we take (11) and (X2), replace xfo (T) by their expressions given in (6) and 
add to (11) the expressions 

TJ 

$2 Pj Cxjo* uj ‘, t) qj'at, j ~ dj (X~, ujo, t) b” dt 
0 j=l 0 j=l 

which are all equal to zero by virtue of the conditions of complem~~ry flexibility 
for the problem (5). This yields the following final expression for the derivative 
(8 (6))’ : 
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[cr fxj*, uj*, tj - c; (xjo, ujO, $1 dt 

T J 

?cz = SDJ ’ *,cu [(cj, 1) i- tb,j f Xj") - (Pj> qj") - Cd,;2 s”)J $ 

M,u (z* PI = ( f Cx j"7 u ;‘I t, + g (.cj” - Xj”) + 

6 (u.j* - tkjo) - z (J;%, Uj”, d)ii p 

~1, (Z, cl) = 2 (“j” (T)) - ( az 
llzj (Xj” V) - 5j” (~I) - Z (Xj” (T)) 1 ~ 

Here zl > 0 since it is the left side of (8); x2 >/ 0 by virtue of (S), of the as- 
sumption that the functions appearing in the expression are convex and of the inequal- 
ity xi (1) > G used for solving the equations (6) with a condition given at the right 
end. Moreover we have xj (2’) > 0 and dxj (t) / dt < 0 in accordance with the 

assumption that the functions appearing in the expression are monotonous and the in- 
equality Aj(t) >,O; JQi), 07 5cd >O by virtue of the relations (I) and (6). 

From (13) it follows that go (p) >' go (0) in some neighborhood of the point p = 0, 

and this implies that the iterative process in terms of the functional is monotonous. 
The local monotonousness is shown by the assumption that the extremal dual vari- 

ables of the problem (6) are unique. The case of non-uniqueness is investigated ac- 
cording to the scheme given in [4]. The monotony and the relation (13) together 
imply, as in [4J, that the solution of the problem (1) - (4) tends to its extremal value. 

The author thanks L. A. Galin for valuable advice. 
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